|
In mathematics the Selberg integral is a generalization of Euler beta function to ''n'' dimensions introduced by . ==Selberg's integral formula== : S_ (\alpha, \beta, \gamma) & = \int_0^1 \cdots \int_0^1 \prod_^n t_i^(1-t_i)^ \prod_ |t_i - t_j |^\,dt_1 \cdots dt_n \\ & = \prod_^ \frac \end Selberg's formula implies Dixon's identity for well poised hypergeometric series, and some special cases of Dyson's conjecture. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Selberg integral」の詳細全文を読む スポンサード リンク
|